
Arrays

An array is an indexed sequence of contiguous
slots in memory, all of the same type. The type
of the elements is called the base type of the
array. The indexes are numbers, starting with 0.

If you are used to lists in Python you can think of
an array as a fixed-length list, though it is
actually more than that.

Everything in Java has a type. The type of an
array of elements that have base type T is T[].
For example, we would declare A to be an array
of ints with

int [] A;
All arrays with the same base type have the
same type (the length is not part of the type).

The fact that arrays are contiguous is very important.
Suppose we have an array of (4-byte) integers starting at
address 232:

240236232 244 248

The index-0 element of this array is stored at its starting
address 232 and occupies the bytes 232, 233, 234, and 235.
The index-1 element is stored at address 236, the index-2
element at 240, and so forth.

In general, the index-n element is stored at address
232+n*4

The important fact to remember about arrays is that the
system can retrieve the element at any index in an array in
one step. This is not true for lists or most other structures.

Back to Java.

We construct an array of N elements with base
type T with

new T[N];

Altogether, a typical line of Java code that
declares and constructs an array of 10 Strings is

String [] page = new String[10];

You can then refer to page[0], page[1], etc. up to
page[9].

A common error is to declare an array but forget to
construct it. For example:

int [] A;
A[0] = 23; // There is no memory allocated

// for A.

You can’t refer to any of the elements of an array
until you have actually constructed it. This works:

int [] A;
A = new int[100];
A[0] = 23;

If you have a small number of specific values
you want to put into an array, there is another
way to construct it.

int [] A = {23, 45, 67};

creates an array of 3 elements and puts 23
into A[0], 45 into A[1], and 67 into A[2]. This is
only practical for initializing small arrays, but it
is sometimes useful.

Clicker Question:
What will this code do:

int [] A = new int[3];
A[0] = 11;
A[1] = 13;
A[2] = 17;
A[3] = 19;
for (int i = 0; i < 3; i++)

System.out.println(A[i]);
A. It will print 11, 13, and 17 on different lines
B. It will print 11, 13, 17, and 19 on different lines
C. It will print 11, 13, 17, 19 and change the length

of A to 4.
D. It will crash and burn.

Answer D: As soon as you try to access A[3] your
program will crash.

You can find the length (number of entries) of
any array A with A.length Remember that this
is just the allocated size of the array; nothing
says that all of those entries have useful data.
Your program needs to manage the data in your
arrays.

If you are trying to count the instances of each
letter 'a' through 'z’ in some file, you might declare
an array

int[] Counts = new int[26];
initialize all of the entries of Counts to 0

for(int i = 0; i < 26; i++)
Counts[i] = 0;

and each time you see an instance of the ith letter
increment Counts[i].

On the other hand, if you are using an array
Primes to keep track of the prime numbers you
have found, there is nothing particularly
meaningful about indexes you use. Here you
probably want to keep a large array Primes:

int[] Primes = new int[1000];
and also have a variable to keep track of how
many entries of this array you are currently using:

int size;

If (size == 0) you haven't yet found any primes;
otherwise the entries of Primes from index 0 to
index size-1 are the primes you have found.

When you find a new prime p you add it to the
array and increment size:

Primes[size] = p;
size += 1;

Your program will crash if you try to access an
entry of the array beyond its length, so test for
this:

if (size < Primes.length) {
Primes[size] = p;
size += 1;

}

One more clicker question: what will this print?
int [] A = new int[10];
size = 0;
size++;
A[size] = 11;
size++;
A[size]= 13;
for (int i = 0; i <=size; i++)

System.out.println(A[i]);

A. It will print 11 13 on one line.
B. It will print 11, then 13 on separate lines.
C. It will print 0, 11, 13 all on separate lines.
D. It will print 11, 13, 0 all on separate lines.

Answer: It will print 0, 11, 13. If you look closely at
the print loop it will print A[0], A[1], and A[2]. The
code before the print loop sets A[1] to 11 and A[2]
to 13; it doesn’t set A[0] to anything. Java initializes
all of the entries of a new array to 0, so A[0] will be
0 when it is printed.

